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Abstract: Substituent effects on model SN2 exchange reactions of 4-substituted bicyclo[2.2.2]octylcarbinyl and cubylcarbinyl 
chlorides are examined in a series of CNDO/2 semiempirical molecular orbital calculations. The energetic trends produced 
by substitution in the two sets of aliphatic compounds are correlated with each other and with related experimental data; sub­
stituent effects in the two series were quite comparable. Interaction of substituents with the (charged) model transition state 
reaction site dominated a much smaller interaction with the (neutral) carbinyl chloride group. In all cases, the electron distri­
bution in a carbinyl chloride and its corresponding model transition state were almost identically affected by a given substitu­
ent. An inductive pattern of charge perturbation (of uncertain energetic importance) was observed. 

Rigid bicyclic molecules, especially those with the 4-bicy-
clo[2.2.2]octyl (BCO) skeleton (1), have played a central role 

in experimental studies which attempt to separate the effects 
of substitution into components which differ in their origin and 
mode of transmission. Because these bicyclic compounds lack 
the aromatic ir electron systems of benzene derivatives (in 
which substitutent effects have been most thoroughly studied) 
but share the latters' rigidity, their properties have been used 
to assess the special transmission characteristics of those 7r 
systems.1 

The experimental studies do not allow an unambiguous 
evaluation of the relative importance of "inductive" and 
"resonance" contributions to observed substituent effects.2 For 
one thing, inductive distortions of benzene IT electrons seem 
to contribute significantly to observed substitutent effects in 
at least some aromatic systems3 (though such distortions were 
not very important in a study of benzyl chloride S N 2 reactions 
analogous to this one4). For another, it has been suggested that 
conjugative transmission mechanisms may operate in the bi­
cyclic saturated compounds. Analogous through-bond cou­

pling5 operates in similar systems and the BCO molecule (see 
Figure 1) has valence orbitals of symmetry appropriate to the 
coupling of either ir or a orbitals of substituent and reaction 
site,6 It has been argued7 that such coupling is not required to 
explain the available data but this question has not been 
thoroughly explored. 

In another attempt to distinguish different modes of trans­
mission, Stock7 has compared substituent effects in BCO de­
rivatives with those in similar compounds in which the BCO 
framework has been replaced by the 4-cubyl skeleton (2). He 

X 

argued that because the spatial relationship of substituent to 
reaction site is quite similar in the two series, through-space 
electrostatic field effects8 should be similar, and that if this 
were the dominant mechanism of transmission measured 
substituent effects ought also to be rather comparable. If, on 
the other hand, the classical inductive effect (wherein suc­
cessively polarized bonds carry the substituent's electrical 
disturbance to the reaction site9) were dominant, the cubane 
compounds ought to exhibit larger effects because there are 
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Table I. CNDO/2 Energies for Participants in Model SN2 and Related Reactions of Bicyclo[2.2.2]octane Derivatives 

X 

H 
NH2 

CH3 
F 
CF3 

NO2 

XC8H12CH2Cl" 

92.1804 
104.6190 
100.8551 
119.1604 
181.8525 
139.9957 

XC8H12CH2Cl2- " 

108.3407 
120.7794 
117.0158 
135.3259 
198.0209 
156.1679 

XC8H13" 

68.0850 
80.5237 
76.7597 
95.0656 

157.7579 
115.9014 

A£(R3)*'C 

0.00 
0.02 
0.03 
0.36 
0.51 
0.68 

A£(R4)*'C 

0.00 
-0.01 
-0.23 
-2.90 
-4.56 
-6.75 

AE* c 

-35.58 
-35.61 
-35.83 
-38.84 
-40.65 
-43.00 

&AE*' 

0.00 
-0.03 
-0.25 
-3.26 
-5.07 
-7.42 

" Minus £totai, hartrees (valence electrons only). b For definitions of reactions R3 and R4, see text. c kcal/mol. 

Figure 1. Valence orbitals of bicyclo[2.2.2]octane. Orbital a, one com­
ponent of the E" HOMO set, can couple x orbitals of substituent and re­
action site; orbital b, only slightly lower in energy, can couple a orbit­
als. 

more bond paths to do the transmitting.10 The different set of 
valence orbitals potentially available for conjugative coupling 
of substituent and reaction site by the cubane skeleton (see 
Figure 2) makes the comparison with BCO systems even more 
interesting. 

This paper reports a series of all valence electron semiem-
pirical molecular orbital orbital calculations carried out to 
investigate the transmission of substituent effects in molecules 
containing the BCO and cubane skeletons. 

Methods and Results 

As in a previous paper on substituent effects in benzene 
derivatives,4 to which we will henceforth refer as I, CNDO/2 
calculations12 were carried out for reactants and model tran­
sition states in model S N 2 reactions (with X = H, NH 2 , CH3 , 

CH2Cl + Cl" 

X - ( ^ ^ ) - C H 2 C l 2 (Rl) 

CHoCL (R2) 

F, CF3 , NO2). The reasons for our choice of this reactive sys­
tem and of the CNDO/2 method for our calculations, as well 
as the geometry optimization procedure used in this work, are 
discussed in I. Skeletal geometries were optimized in the parent 

Figure 2. Valence orbitals of cubane. Orbital a is a component of the T2g 
HOMO set which can couple -K orbitals of substituent and reaction site; 
orbital b, another component of the same set, can couple a orbitals. 

hydrocarbons, reaction site geometries were adjusted to the 
aliphatic environment, and substituents were assigned the same 
NDO geometries used previously.13 As before, the A£*'s 
calculated for R l and R2 were negative, but the substituent 
effects, i.e., the changes of AE* induced by substitution 
(5AE*), had reasonable signs and relative magnitudes. 

Because both the rates of actual benzyl halide substitution 
reactions14 and calculated "activation energies" for the ben­
zene analogue of Rl and R2 were highly correlated with 
Hammett a constants (which are pAfa changes brought about 
by substitution in benzoic acids), we would have liked to cor­
relate substitutent effects on Rl and R2 energy changes with 
pATa changes for the carboxylic acids below. 

COOH COOH 

The calculated substituent effects (8AE*) are tabulated, 
along with other relevant energetic quantities, in Table I for 
BCO derivatives and in Table II for cubane compounds. 
High-precision p £ a measurements (in 50% w/w EtOH-H 2O) 
are available for some, but not all, of the substituted BCO acids 
of interest;7*'15,16 unfortunately, data for the relevant cubane 
acids could not be found in the literature. The rather satis­
factory correlation (in the limited number of cases where direct 
comparisons were possible) is shown in Figure 3. The fit is 
slightly better than one calculated in a similar comparison of 
Hermann's computed CNDO/2 acid dissociation energies with 
the p£as;1 8 '1 9 the slopes of the two correlations indicate that 
the model S N 2 reaction is considerably more sensitive to sub­
stitution than the acid dissociation. 

Since appropriate experimental quantities were not available 
for the cubane compounds considered here, their substituent 
effects were compared with those calculated for the corre-
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Table II. CNDO/2 Energies for Participants in Model SN2 and Related Reactions of Cubane Derivatives 

XC8H6CH2Cl" XC8H6CH2Cl2- XC8H7" A£(R3)6'' A£(R4)*'C AE* c SAE*' 

H 
NH2 

CH3 
F 
CF3 
NO2 

87.3785 
99.8349 
96.0644 

114.3596 
177.0598 
135.2035 

103.5324 
115.9885 
112.2190 
130.5189 
193.2233 
151.3711 

63.2683 
75.7247 
71.9543 
90.2500 

152.9508 
111.0949 

0.00 
0.03 
0.09 
0.41 
0.77 
0.98 

0.00 
0.19 

-0.39 
-2.97 
-5.27 
-7.57 

-31.57 
-31.41 
-32.05 
-34.95 
-37.62 
-40.12 

0.00 
0.16 

-0.48 
-3.38 
-6.04 
-8.55 

" Minus .Etotai. hartrees (valence electrons only). * For definitions of reactions R3 and R4, see text. c kcal/mol. 
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I 
S 

.6 .7 .9 1.0 1.1 

log 

Figure 3. CNDO/2 substituent effects on bicyclo[2.2.2]octylcarbinyl SN2 
reactions vs. ApKa for the corresponding carboxylic acids (in 50% w/w 
EtOH-H2O). The least-squares line is 6A£* = (-7.0 ± 0.3) log (K/KH) 
+ (-0.3 ± 0.2) kcal/mol. The correlation coefficient for the four data (H, 
CH3, CF3, NO2) is 0.996. 

~. 2 

S 3 

Ul 

< 

-8 

SAE (BCO) 
Figure 4. Comparison of calculated CNDO/2 substituent effects in cub-
ylcarbinyl and bicyclo[2.2.2]octylcarbinyl SN2 reactions. The least-squares 
line is 6AE* (cubane) = (1.16 ± 0.03)SA£* (BCO) + (0.05 ± 0.11) 
kcal/mol. The correlation coefficient for the six data is 0.998. 

sponding BCO derivatives; that comparison is shown in Figure 
4. We find, as did Cole, Mayers, and Stock when they com­
pared cubanecarboxylic acid pA"as with those for BCO acids,7b 

that substituent effects in the two series are linearly related, 
the slope of the straight line being not very different from unity. 
Our calculations thus provide additional evidence for their 
conclusion that the cubane and BCO skeletons do not exhibit 
major differences in transmission of the energetic effects of 
substitution.20 

The calculated substituent effects on activation energies are 
dominated by interaction of substituent and reaction site in the 
(charged) transition states; the corresponding interactions in 
the (neutral) carbinyl chlorides are much smaller. We base this 
statement on calculated energy changes for the reactions21 

X-R-H + H-R-CH2Cl — X-R-CH2Cl + H-R-H (R3) 

X-R-H + H-R-CH2Cl2-
— X-R-CH2Cl2- + H-R-H (R4) 

which are reported in Tables I and II. 
The response of charge distribution to substitution in these 

two aliphatic systems is as similar as was energetic response. 
(There is some evidence22—and widespread presumption— 
that charge and energy perturbations are in fact proportional 
to one another.) Calculated "regional" electron densities,23 

derived from Mulliken population analyses24 and measured 
relative to formal densities for the atoms and groups, are pre­
sented in Table III and IV. As was the case for benzene de­
rivatives in I, a given substituent produced essentially identical 
charge perturbations in each model transition state as it did 
in the correpsonding carbinyl chloride, i.e., its influence on 
molecular charge distribution was essentially independent of 
the transformation of the reactive site by the process of reac­

tion. In each of the series of compounds, before the transfor­
mation the CH2Cl group is a moderate electron acceptor from 
the skeleton (0.09 e" was transferred in the BCO derivatives, 
0.07 e _ in the cubane compounds); most of this electron density 
is lost by the carbon to which the reaction site is attached. In 
the model transition states, C H 2 C l 2

- has lost much of this 
attraction for skeletal electrons. In the BCO series, it is still 
slightly electron withdrawing (0.04 e - ) ; in the cubanes it nei­
ther withdraws nor donates. In both cases, the net donation 
from reaction site to framework as the reacton proceeds is 
accompanied by some reorganization of skeletal charges; the 
carbon adjacent to the reaction site is left somewhat more 
electron deficient than it was at the beginning of the pro­
cess. 

In both series, the CH 3 group participates in little net in­
terchange of electron density, N H 2 and CF3 are moderate 
electron acceptors, and F and NO 2 withdraw electrons 
strongly. The magnitude of the charge disturbances (equal ones 
in carbinyl chloride and corresponding model transition state) 
set up by substituents in each of these aliphatic systems falls 
off monotonically with degree of removal from the point of 
attachment of the substituent in a manner reminiscent of the 
classical inductive effect; the perturbations do not follow the 
common pattern of charge alternation noted by Pople and 
Gordon,25 by us in I, and by others. Among the BCO com­
pounds, the pattern of disturbance does not extend beyond the 
carbon of attachment in the CH 3 compound, reaches only to 
the skeletal carbons (3 to the N H 2 and F substituents, and dies 
out at the 7 positions in the CF 3 and NO 2 compounds. In the 
cubane series, CH 3 and N H 2 affect only the a and (3 skeletal 
carbons; F and CF3 make their presence felt as far away as the 
carbons 7 to their point of attachment. Only in the NO2-SUb-
stituted cubanes does the steadily decreasing disturbance ac­
tually reach the reaction site. 
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Table III. Total CNDO/2 Mulliken Electron Densities"'* of Bicyclo[2.2.2]octylcarbinyl Chlorides and Model Transition States 

Molecule CH2 Cl C, (CH2)2 (CH2)3 C4 (CH2); (CH2)6 (CH2), (CH2)8 Subst 

BCO carbinyl chloride (OC) 
Model transition 

A(TS-OC) 

NH 2 -OC 
N H 2 - T S 
A(TS-OC) 
S(NH2-H) 

CH 3 -OC 
CH 3 -TS 
A(TS-OC) 
5(CH3-H) 

F-OC 
F-TS 
A(TS-OC) 
3(F-H) ' ' 

CF 3 -OC 
CF 3 -TS 
A(TS-OC) 
5(CF3-H) 

NO 2 -OC 
NO 2 -TS 
A(TS-OC) 
6(NO2-H) 

state (TS) 
- 9 

- 2 6 
- 1 6 

- 9 
- 2 6 
- 1 6 

O 

- 9 
- 2 6 
- 1 6 

O 

- 1 0 
- 2 6 
- 1 6 

0 

- 1 0 
- 2 6 
- 1 6 

0 

- 1 0 
- 2 6 
- 1 6 

O 

18 
15 

- 3 

18 
15 

- 3 
O 

18 
15 

- 3 
O 

17 
14 

- 3 
O 

17 
14 

- 3 
- 1 

17 
14 

- 3 
- 1 

- 5 
- 6 
- 1 

- 5 
- 6 
- 1 

O 

- 5 
- 6 
- 1 

O 

- 5 
- 6 
- 1 

O 

- 6 
- 7 
- 1 

O 

- 5 
- 7 
- 1 

O 

O 
- 6 
- 6 

O 
- 6 
- 6 

O 

O 
- 6 
- 6 

O 

- 1 
- 7 
- 6 
- 1 

- 1 
- 7 
- 6 
- 1 

- 1 
- 7 
- 6 
- 1 

O 
4 
4 . 

2 
6 
4 
2 

O 
4 
4 
O 

O 
5 
4 
O 

- 3 
1 
4 

- 3 

- 3 
O 
4 

- 4 

- 4 
- 4 

O 

- 1 4 
- 1 3 

O 

- 5 
- 5 

O 

- 2 3 
- 2 2 

O 

3 
3 
O 

- 6 
- 6 

O 

O 
4 
3 

1 
4 
3 
1 

O 
3 
3 
O 

1 
4 
3 
O 

- 3 
O 
3 

- 3 

- 4 
O 
3 

- 4 

- 1 
- 2 
- 1 

- 1 
- 2 
- 1 

O 

- 1 
- 2 
- 1 

O 

- 2 
- 3 
- 1 
- 1 

- 2 
- 3 
- 1 
- 1 

- 2 
- 3 
- 1 
- 1 

- 1 
- 2 
- 1 

- 1 
- 2 
- 1 

O 

- 1 
- 2 
- 1 

O 

- 2 
- 3 
- 1 
- 1 

- 2 
- 3 
- 1 
- 1 

- 2 
- 3 
- 1 
- 1 

O 
4 
3 

1 
4 
3 
1 

O 
3 
3 
O 

1 
4 
3 
O 

- 3 
O 
3 

- 3 

- 4 
O 
3 

- 4 

2c 

5C 

ic 

8 
11 
3 

3 
7 
4 

24 
26 

2 

8 
11 
3 

21 
25 

4 

" Relative to formal densities at each site, 
in fortuitous cancellations at (CH2)2,5,8-

In units of 0.01 electron. c Density at H4. d "Regionalizing" this row of charge differences resulted 

Table IV. Total CNDO/2 Mulliken Electron Densities"* of Cubylcarbinyl Chlorides and Model Transition States 

Molecule 

Cubylcarbinyl chloride (CC) 
Model transition state 

A(TS-CC) 

N H 2 - C C 
NH 2 -TS 
A(TS-CC) 
5(NH 2 -H) 

CH 3 -CC 
CH 3 -TS 
A(TS-CC) 
5(CH3-H) 

F-CC 
F-TS 
A(TS-CC) 
6(F-H) 

CF 3 -CC 
CF 3 -TS 
A(TS-CC) 
5(CF3-H) 

NO 2 -CC 
NO 2 -TS 
A(TS-CC) 
5(NO2-H) 

(TS) 

CH2 

- 1 0 
- 2 6 
- 1 6 

- 1 0 
- 2 6 
- 1 6 

0 

- 1 0 
- 2 6 
- 1 6 

O 

- 1 0 
- 2 6 
- 1 6 

O 

- 1 0 
- 2 6 
- 1 6 

O 

- 1 0 
- 2 6 
- 1 6 

- 1 

Cl 

17 
14 

- 3 

17 
14 

- 3 
0 

17 
14 

- 3 
0 

16 
13 

- 3 
- 1 

16 
13 

- 3 
- 1 

15 
13 

- 3 
- 1 

C, 

- 4 
- 8 
- 4 

- 4 
- 8 
- 4 

0 

- 4 
- 8 
- 4 

0 

- 5 
- 8 
- 4 

0 

- 5 
- 8 
- 4 

O 

- 5 
- 8 
- 4 
- 1 

(CH) 2 

O 
- 3 
- 3 

O 
- 4 
- 3 

O 

O 
- 3 
- 3 

O 

- 1 
- 4 
- 3 
- 1 

- 1 
- 4 
- 3 
- 1 

- 2 
- 5 
- 3 
- 2 

(CH) 3 

- 1 
1 
2 

3 
4 
2 
3 

O 
2 
2 
1 

O 
2 
2 
1 

- 4 
- 2 

2 
- 3 

- 4 
- 2 

2 
- 3 

C4 

- 1 
O 
1 

- 1 3 
- 1 1 

2 

- 4 
- 3 

2 

- 2 0 
- 1 9 

2 

5 
7 
2 

- 3 
- 2 

1 

(CH)5 

0 
3 
3 

2 
4 
3 
2 

O 
3 
3 
1 

O 
3 
3 
1 

- 3 
- 1 

3 
- 3 

- 4 
- 1 

3 
- 4 

(CH) 6 

O 
O 
O 

- 1 
- 1 

O 
O 

- 1 
O 
O 
O 

- 1 
- 1 

O 
- 1 

- 1 
- 1 

O 
- 1 

- 2 
- 2 

O 
- 1 

(CH)7 

O 
3 
3 

2 
4 
3 
2 

O 
3 
3 
1 

O 
3 
3 
1 

- 3 
- 1 

3 
- 3 

- 4 
- 1 

3 
- 4 

(CH)8 

O 
O 
O 

- 1 
- 1 

O 
O 

- 1 
O 
O 
O 

- 1 
- 1 

O 
- 1 

- 1 
- 1 

O 
- 1 

- 2 
- 2 

O 
- 1 

Subst 

lc 

3 c 

3C 

6 
9 
4 

2 
6 
4 

22 
24 

2 

7 
11 
4 

20 
24 

4 

" Relative to formal density at each site. b In units of 0.01 electron. c Density at H4. 

Conclusions 

Transmission of the influence of polar substituents by the 
bicyclo[2.2.2]octane skeleton and by the cubane skeleton is 
similar in magnitude and probably in mechanism. If 
through-bond coupling via framework valence orbitals is im­
portant, it does not involve appreciable charge transfer and is 
comparable in the two systems. Calculated charge changes 
produced by substitution, which were essentially identical in 

carbinyl chloride and corresponding model transition state for 
this S N 2 reaction, fell off monotonically at positions succes­
sively removed from the point of attachment of the substituent. 
Since in general the disturbance did not reach the reaction site, 
it is something of a matter of taste whether to call the result 
of this skeletal polarization a classical inductive effect. The 
present analysis does not allow estimation of the relative en­
ergetic importance of this polarization and the electrostatic 
field effect (experimental results7-11 indicate that the latter is 
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more significant26). A more detailed examination of these and 
previous results using electrostatic calculations and pertur­
bation theory is underway. 
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bonding orbitals. A number of investigators have since per­
formed FSGO calculations on hydrocarbons. Their results 
demonstrate that accurate predictions can be made for mo­
lecular geometries,2-7 conformational preferences,2-8 orbital 
energy orderings,6-9 ESCA chemical shifts,10 charge densi­
ties,11'12 dipole moments,6'12 and polarizabilities and suscep-
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